Release 56
(Apr 24, 2025)

Reference # 18997068 Details:

Authors:Kim, E-S; Shi, X; Cobanoglu, O; Weigel, K; Berger, P J; Kirkpatrick, B W
Affiliation:Department of Animal Sciences, University of Wisconsin, Madison 53706; Contact: bwkirkpa@wisc.edu
Title:Refined mapping of twinning-rate quantitative trait loci on bovine chromosome 5 and analysis of insulin-like growth factor-1 as a positional candidate gene.
Journal:J Anim Sci, 2009, (3): 835-43 DOI: 10.2527/jas.2008-1252
Abstract:

Twinning in cattle is a complex trait that is associated with economic loss and health issues such as abortion, dystocia, and reduced calf survival. Twinning-rate QTL have been detected previously on BTA5 in the North American Holstein and Norwegian dairy cattle populations and in a USDA herd selected for high twinning rate. In previous work with the North American Holstein population, the strongest evidence for a QTL was obtained from analysis of an extended, multiple-generation family. Using additional animals, an increased density of SNP marker association tests, and a combined linkage and linkage disequilibrium mapping method, we refined the position of this QTL in the North American Holstein population. Two sets of twinning-rate predicted transmitting abilities estimated during 2 different time periods in the North American dairy cattle population were used to provide validation of results. A total of 106 SNP and 3 microsatellites were used to scan the genomic region between 5 and 80 Mb on BTA5. Combined linkage-linkage disequilibrium analysis identified significant evidence for QTL within the 25- to 35-Mb and 64- to 70-Mb regions of BTA5. The IGF-1 gene (IGF1) was examined as a positional candidate gene and an SNP in intron 2 of IGF1 was significantly associated with twinning rate by using both data sets (P = 0.003 and P = 1.05 x 10(-6)). Replication of this association in other cattle populations will be required to examine the extent of linkage disequilibrium with the underlying quantitative trait nucleotide across breeds.

Links:   PubMed | List Data  

 

 

© 2003-2025: USA · USDA · NRPSP8 · Program to Accelerate Animal Genomics Applications. Contact: Bioinformatics Team