
Which single-cell methods for 
which biological questions: 

strengths and weakness
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Single-cell analysis 
workflow
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Filter for QC metrics
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Doublet removal approach

• Cell properties and dissociation methods can increase doublet 
numbers

• The proportion of doublets differs from technology ex : InDrops, 10x, 
smartseq ...
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Normalization and gene selection 

• Two main normalization methods : log normalization and SCTransform
• SCTransform is required for most methods in SpatialRNAseq

• Gene selection will differ depending on the diversity of cells (atlas vs 
FACS sorted)
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Noise effect on UMAP and clusterisation

8InDrops (more noise) 10x Flex (less noise)



Single-cell give bad proportion

• All cells don’t have the same survival rates throughout the 
experiment (ex : trophectoderm cells don’t like nuclei isolation)

• You can induce biases in tissue section (ex: melanoma)
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Clusterisation

• Depends on the levels of 
sub-populations you want 
to describe

• It depends on the cell 
annotation you will use

• You can use clustree (R 
package) to help you
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Downstream possibility in
scRNAseq
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DEG & Functional enrichment

12Dufour et al 2025.

• Different enrichment methods : 
AUCell, GSVA, GSEA

• SCPA for pathway analysis between 
condition or pseudotimes



Interactions between populations 13
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Chordiagram of interactions between populations at D9Dufour et al 2024.

• CellChat, NicheNet, 
CellPhone …



Gene regulatory networks
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Combined heatmap of Regulons identified in our data

Dufour et al 2024.



Downstream possibility
scMultiomics (RNAseq+ATACseq)
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scATACseq scRNAseq scRNAseq + 
scATACseq



Example gene : GATA6
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Difference in accessibility of promoter regions
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Heatmap of differential promoter regions



Association of 
accessibility of 
regulatory regions 
with gene 
expression
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Gene regulatory networks
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Combined heatmap of eRegulons identified in our data



Example 
transcription 

factor : GRHL1
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Motif 
Footprint



Motif can be difficult to infers
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SpatialRNAseq
• Much more challenging 

experiments
• Less resolution and covered 

genes
• Difficulty in annotating 

complex spot
• Low-quality area
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Conclusions

DEG & Functionnal 
enrichment

Gene Regulatory 
Network Cell Interactions

scRNAseq

scMultiomics

SpatialRNAseq
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